If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36+y^2=225
We move all terms to the left:
36+y^2-(225)=0
We add all the numbers together, and all the variables
y^2-189=0
a = 1; b = 0; c = -189;
Δ = b2-4ac
Δ = 02-4·1·(-189)
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{21}}{2*1}=\frac{0-6\sqrt{21}}{2} =-\frac{6\sqrt{21}}{2} =-3\sqrt{21} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{21}}{2*1}=\frac{0+6\sqrt{21}}{2} =\frac{6\sqrt{21}}{2} =3\sqrt{21} $
| 25+y^2=225 | | 4+y^2=225 | | a+2=77 | | x-6+x=2 | | 90+9x+16+5x-14=180 | | 25x-18=5x+32 | | 3/7d=5/7 | | 0.15x-0.3=2.7+0.75x | | -2.7x=0.4=2.8-1.2x | | 5^(2x)=28 | | 236+2x=360 | | 16t-2t=t+9+4t | | 3x+138=180 | | 1x=7-0.5 | | 15x-30=27+75x | | Y=3x-5=-3x+7 | | 2^3x=8^6+4x | | (D^4+5D^2+6)y=0 | | 3h+7=25 | | 0.9x-1.2=1-0.2x | | x^2+9x-22=0 | | 3(n+5)=n+29 | | 12-6x=2x+4 | | 2(m-7)=16 | | 9x-8+55=90 | | 11x-15=3x-7 | | 8x=x+210 | | 8x=x+10 | | 2^3x=3^2x+1 | | 5x-7=x-(2x+1) | | 9x-8+55=180 | | 6x+(x+19)=180 |